Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
2.
Medicine (Baltimore) ; 101(39): e30744, 2022 Sep 30.
Article in English | MEDLINE | ID: covidwho-2113766

ABSTRACT

OBJECTIVE: The aim of this study was to compare the radiographic features of patients with progressive and nonprogressive coronavirus disease 2019 (COVID-19) pneumonia. METHODS: PubMed, Embase, and Cochrane Library databases were searched from January 1, 2020, to February 28, 2022, by using the keywords: "COVID-19", "novel Coronavirus", "2019-novel coronavirus", "CT", "radiology" and "imaging". We summarized the computed tomography manifestations of progressive and nonprogressive COVID-19 pneumonia. The meta-analysis was performed using the Stata statistical software version 16.0. RESULTS: A total of 10 studies with 1092 patients were included in this analysis. The findings of this meta-analysis indicated that the dominating computed tomography characteristics of progressive patients were a crazy-paving pattern (odds ratio [OR] = 2.10) and patchy shadowing (OR = 1.64). The dominating lesions distribution of progressive patients were bilateral (OR = 11.62), central mixed subpleural (OR = 1.37), and central (OR = 1.36). The other dominating lesions of progressive patients were pleura thickening (OR = 2.13), lymphadenopathy (OR = 1.74), vascular enlargement (OR = 1.39), air bronchogram (OR = 1.29), and pleural effusion (OR = 1.29). Two patterns of lesions showed significant links with the progression of disease: nodule (P = .001) and crazy-paving pattern (P = .023). Four lesions distribution showed significant links with the progression of disease: bilateral (P = .004), right upper lobe (P = .003), right middle lobe (P = .001), and left upper lobe (P = .018). CONCLUSION: Nodules, crazy-paving pattern, and/or new lesions in bilateral, upper and middle lobe of right lung, and lower lobe of left lung may indicate disease deterioration. Clinicians should formulate or modify treatment strategies in time according to these specific conditions.


Subject(s)
COVID-19 , Pneumonia , COVID-19/diagnostic imaging , Humans , Lung/diagnostic imaging , Lung/pathology , Pneumonia/pathology , Retrospective Studies , SARS-CoV-2 , Tomography, X-Ray Computed/methods
3.
Radiology of Infectious Diseases ; 8(4):158-167, 2021.
Article in English | ProQuest Central | ID: covidwho-2118311

ABSTRACT

Computed tomography (CT) examination plays an indispensable role in the diagnosis of coronavirus disease-2019 (COVID-19). Many studies have evaluated the severity of COVID-19 based on CT images, with the severity of COVID-19 being evaluated either manually or by using artificial intelligence. In this review, the recently reported methods for manually evaluating COVID-19 severity based on CT images are summarized and divided into three categories: evaluation based on the extent of abnormalities;evaluation based on the characteristics of abnormalities;and evaluation based on both the extent and characteristics of abnormalities.

4.
Front Public Health ; 10: 787857, 2022.
Article in English | MEDLINE | ID: covidwho-1924168

ABSTRACT

Background: A number of public health measures are required during the COVID-19 pandemic. To stop the spread of COVID-19, the Chinese government has adopted isolation policies, including closing non-essential businesses, public transportation and schools, moving students' face-to-face learning to online, and recommending the cancellation of all non-essential activities and outdoor activities. However, while this isolation strategy has reduced human-to-human transmission of COVID-19, it has led to dramatic changes in students' daily lives and learning styles, including reduced physical activity and increased sedentary time. Considering the potentially harmful effects of physical inactivity, this study hoped to explore the incidence and influencing factors of non-participation in home physical exercise among Chinese students aged 10-20 during the implementation of the COVID-19 isolation policy. Methods: Through an online questionnaire platform, this study created an open-ended questionnaire (from March 1, 2020 to March 10, 2020) and distributed it to students in areas where isolation policies were enforced. The questionnaire was initially distributed by 10 recruited volunteers, and then the questionnaire was voluntarily forwarded and shared by the subjects or others, in a "snowball" way, to expand distribution. Finally, the survey data of 4,532 Chinese students aged 10-20 were collected. The incidence of respondents non-participating in home physical activity was determined using univariate analysis. Using odds ratios and 95% confidence intervals of a multivariate binary logistic regression model, factors influencing non-participation in home physical exercise were estimated. Results: Among the sample students, the incidence rate of non-participating in home physical exercise was 25.86% (24.06-27.15%). Exercise intentions, exercise habits, self-assessed health, beliefs in physical health, family exercise, family exercise recommendations, home exercise conditions, school exercise guidance, and health education programs had a negative impact on students non-participating in home physical exercise. Academic performance and electronic product use had a positive effect on non-participating in home physical exercise. Conclusions: A variety of forward leaning factors, enabling factors and demand factors have affected the occurrence of students" non-participating in home physical exercise. Future health isolation policies should take into account these influencing factors to reduce the occurrence of students" non-participating in home physical exercise and to promote students' independent participation in physical exercise.


Subject(s)
COVID-19 , COVID-19/epidemiology , COVID-19/prevention & control , China/epidemiology , Cross-Sectional Studies , Exercise , Health Policy , Humans , Pandemics , Students
5.
Risk Manag Healthc Policy ; 14: 5027-5038, 2021.
Article in English | MEDLINE | ID: covidwho-1581543

ABSTRACT

PURPOSE: To compare food safety knowledge, attitudes, and self-reported practices among medical staff in China before, during, and after the COVID-19 pandemic. PATIENTS AND METHODS: The questionnaire was anonymous. All respondents were Chinese medical personnel. A Chi-square contingency table was used to compare the knowledge and attitudes of Chinese medical staff before, during and after COVID-19. R statistical software (v4.0.0) was used for analysis. RESULTS: A total of 1431 valid responses (57.3% from female respondents) were included in our analysis. Medical professionals were geographically distributed as follows: eastern China, 55.5%; central China, 19.7%; western China, 24.1%; Hong Kong, Macau, or Taiwan, 0.05%. Medical professionals reported that they paid greater attention to food safety after the COVID-19 pandemic compared with before the epidemic. Self-reported knowledge of and attitudes toward food safety among medical staff were significantly different before, during, and after the COVID-19 pandemic (both P<0.001). CONCLUSION: After the COVID-19 pandemic, medical professionals paid increasing attention to food safety, which is a clinically important change. Because medical professionals can influence public understanding of food safety, their increased attention to this subject may enable them to promote food safety knowledge more actively in their work. This may in turn promote a better understanding of food safety and protect the health of the general public.

6.
Lancet Infect Dis ; 21(12): 1654-1664, 2021 12.
Article in English | MEDLINE | ID: covidwho-1531911

ABSTRACT

BACKGROUND: SARS-CoV-2 has caused millions of deaths, and, since Aug 11, 2020, 20 intramuscular COVID-19 vaccines have been approved for use. We aimed to evaluate the safety and immunogenicity of an aerosolised adenovirus type-5 vector-based COVID-19 vaccine (Ad5-nCoV) in adults without COVID-19 from China. METHOD: This was a randomised, single-centre, open-label, phase 1 trial done in Zhongnan Hospital (Wuhan, China), to evaluate the safety and immunogenicity of the Ad5-nCoV vaccine by aerosol inhalation in adults (≥18 years) seronegative for SARS-CoV-2. Breastfeeding or pregnant women and people with major chronic illnesses or history of allergies were excluded. Participants were enrolled and randomly assigned (1:1:1:1:1) into five groups to be vaccinated via intramuscular injection, aerosol inhalation, or both. Randomisation was stratified by sex and age (18-55 years or ≥56 years) using computer-generated randomisation sequences (block sizes of five). Only laboratory staff were masked to group assignment. The participants in the two aerosol groups received an initial high dose (2 × 1010 viral particles; HDmu group) or low dose (1 × 1010 viral particles; LDmu group) of Ad5-nCoV vaccine on day 0, followed by a booster on day 28. The mixed vaccination group received an initial intramuscular (5 × 1010 viral particles) vaccine on day 0, followed by an aerosolised booster (2 × 1010 viral particles) vaccine on day 28 (MIX group). The intramuscular groups received one dose (5 × 1010 viral particles; 1Dim group) or two doses (10 × 1010 viral particles; 2Dim group) of Ad5-nCoV on day 0. The primary safety outcome was adverse events 7 days after each vaccination, and the primary immunogenicity outcome was anti-SARS-CoV-2 spike receptor IgG antibody and SARS-CoV-2 neutralising antibody geometric mean titres at day 28 after last vaccination. This trial is registered with ClinicalTrials.gov, number NCT04552366. FINDINGS: Between Sept 28, 2020, and Sept 30, 2020, 230 individuals were screened for inclusion, of whom 130 (56%) participants were enrolled into the trial and randomly assigned into one of the five groups (26 participants per group). Within 7 days after vaccination, adverse events occurred in 18 (69%) in the HDmu group, 19 (73%) in the LDmu group, 19 (73%) in the MIX group, 19 (73%) in the 1Dim group, and 15 (58%) in the 2Dim group. The most common adverse events reported 7 days after the first or booster vaccine were fever (62 [48%] of 130 participants), fatigue (40 [31%] participants), and headache (46 [35%] participants). More adverse events were reported in participants who received intramuscular vaccination, including participants in the MIX group (49 [63%] of 78 participants), than those who received aerosol vaccine (13 [25%] of 52 participants) after the first vaccine vaccination. No serious adverse events were noted within 56 days after the first vaccine. At days 28 after last vaccination, geometric mean titres of SARS-CoV-2 neutralising antibody was 107 (95% CI 47-245) in the HDmu group, 105 (47-232) in the LDmu group, 396 (207-758) in the MIX group, 95 (61-147) in the 1Dim group, and 180 (113-288) in the 2Dim group. The geometric mean concentrations of receptor binding domain-binding IgG was 261 EU/mL (95% CI 121-563) in the HDmu group, 289 EU/mL (138-606) in the LDmu group, 2013 EU/mL (1180-3435) in the MIX group, 915 EU/mL (588-1423) in the 1Dim group, and 1190 EU/mL (776-1824) in the 2Dim group. INTERPRETATION: Aerosolised Ad5-nCoV is well tolerated, and two doses of aerosolised Ad5-nCoV elicited neutralising antibody responses, similar to one dose of intramuscular injection. An aerosolised booster vaccination at 28 days after first intramuscular injection induced strong IgG and neutralising antibody responses. The efficacy and cost-effectiveness of aerosol vaccination should be evaluated in future studies. FUNDING: National Key Research and Development Programme of China and National Science and Technology Major Project. TRANSLATION: For the Chinese translation of the Summary see Supplementary Material.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Administration, Inhalation , Adolescent , Adult , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , COVID-19 Vaccines/adverse effects , China , Double-Blind Method , Female , Humans , Immunity, Cellular/immunology , Immunization Schedule , Immunization, Secondary , Immunogenicity, Vaccine , Immunoglobulin G/blood , Injections, Intramuscular , Male , Middle Aged , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Young Adult
7.
J Comput Assist Tomogr ; 44(5): 627-632, 2020.
Article in English | MEDLINE | ID: covidwho-1501243

ABSTRACT

OBJECTIVE: To determine the predictive computed tomography (CT) and clinical features for diagnosis of COVID-19 pneumonia. METHODS: The CT and clinical data including were analyzed using univariate analysis and multinomial logistic regression, followed by receiver operating characteristic curve analysis. RESULTS: The factors including size of ground grass opacity (GGO), GGO with reticular and/or interlobular septal thickening, vascular enlargement, "tree-in-bud" opacity, centrilobular nodules, and stuffy or runny nose were associated with the 2 groups of viral pneumonia, as determined by univariate analysis (P < 0.05). Only GGO with reticular and/or interlobular septal thickening, centrilobular nodules, and stuffy or runny nose remained independent risk factors in multinomial logistic regression analysis. Receiver operating characteristic curve analysis showed that the area under curve of the obtained logistic regression model was 0.893. CONCLUSION: Computed tomography and clinical features including GGO with reticular and/or interlobular septal thickening, absence of centrilobular nodules, and absence of stuffy or runny nose are potential patients with COVID-19 pneumonia.


Subject(s)
Betacoronavirus , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Lung/diagnostic imaging , Pneumonia, Viral/diagnosis , Tomography, X-Ray Computed/methods , Adult , COVID-19 , COVID-19 Testing , Diagnosis, Differential , Female , Humans , Male , Middle Aged , Pandemics , Predictive Value of Tests , Reproducibility of Results , Retrospective Studies , SARS-CoV-2
8.
Front Psychiatry ; 12: 720833, 2021.
Article in English | MEDLINE | ID: covidwho-1502339

ABSTRACT

Objective: To explore the effects of using RPE exercise intensity monitoring methods and 12-week mid- and low-intensity team aerobic training on anxiety, depression and sleep quality of depressed middle school students after the COVID-19 epidemic. Methods: All study participants were all from a boarding middle school in Chongqing, China. All study participants were screened by the self-rating depression scale and reached the diagnostic criteria for depression. The study subjects were divided into a control group (N = 35) and an exercise group (N = 34). The exercise group performed 30-min night aerobic running four times a week. Use the Borg 6-20 rating of perceived exertion scale (RPE) as a monitoring tool for exercise intensity, and control the exercise intensity at RPE = 11-14. And the control group studied and lived normally. The experiment lasted 12 weeks in total. After the experiment, there were 34 people in the control group and 23 people in the exercise group. The subjects' anxiety, depression and Pittsburgh sleep quality were scored before and after the experiment. Results: After intervention, the depression index (p < 0.01) of the exercise group was significantly lower than that of the control group. Conclusion: Using the RPE exercise intensity monitoring method for 12 weeks of mid- and low-intensity team aerobic training can improve the depressive symptoms of depressed middle school students, and it is beneficial to improve the students' mental health.

9.
Risk Manag Healthc Policy ; 14: 4393-4399, 2021.
Article in English | MEDLINE | ID: covidwho-1496757

ABSTRACT

BACKGROUND AND AIM: Relevant studies show that population migration has a great impact on the early spread of infectious diseases. Therefore, it is important to explore whether there is an explicit relationship between population migration and the number of confirmed cases for the control of the COVID-19 epidemic. This paper mainly explores the impact of population migration on early COVID-19 transmission, and establishes a predictive nonlinear mathematical model to predict the number of early cases. METHODS: Data of confirmed cases were sourced from the official website of the Municipal Health Committee, and the proportions of migration from Wuhan to other cities were sourced from the Baidu data platform. The data of confirmed cases and the migration proportions of 14 cities in Hubei Province were collected, the COVID-19 cases study period was determined as 10 days based on the third quartile of the interval of the incubation period, and a non-linear mathematical model was constructed to clarify the relationship between the migration proportion and the number of confirmed COVID-19 cases. Finally, eight typical regions were selected to verify the accuracy of the model. RESULTS: The daily population migration rates and the growth curves of the number of confirmed cases in the 14 cities were basically consistent, and Pearson's correlation coefficient was 0.91. The specific mathematical expression of 14 regions is . In each of the fourteen cities, The nonlinear exponential model structure is as follows:. It was found that the R 2 values of the fitted mathematical model were greater than 0.8 in all studied regions, excluding Suizhou (p < 0.05). The established mathematical model was used to fit eight regions in China, and the correlations between the predicted and actual numbers of confirmed cases were greater than 0.9, excluding that of Hebei Province (0.82). CONCLUSION: The study found that population migration has a positive and significant impact on the spread of COVID-19. Modeling COVID-19 risk may be a useful strategy for directing public health surveillance and interventions. Restricting the migration of the population is of great significance to the joint prevention and control of the pandemic worldwide.

10.
World J Gastroenterol ; 27(24): 3502-3515, 2021 Jun 28.
Article in English | MEDLINE | ID: covidwho-1298185

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by infection of the coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with typical respiratory symptoms. SARS-CoV-2 invades not only the respiratory system, but also other organs expressing the cell surface receptor angiotensin converting enzyme 2. In particular, the digestive system is a susceptible target of SARS-CoV-2. Gastrointestinal symptoms of COVID-19 include anorexia, nausea, vomiting, diarrhea, abdominal pain, and liver damage. Patients with digestive damage have a greater chance of progressing to severe or critical illness, a poorer prognosis, and a higher risk of death. This paper aims to summarize the digestive system symptoms of COVID-19 and discuss fecal-oral contagion of SARS-CoV-2. It also describes the characteristics of inflammatory bowel disease patients with SARS-CoV-2 infection and discusses precautions for preventing SARS-CoV-2 infection during gastrointestinal endoscopy procedures. Improved attention to digestive system abnormalities and gastrointestinal symptoms of COVID-19 patients may aid health care providers in the process of clinical diagnosis, treatment, and epidemic prevention and control.


Subject(s)
COVID-19 , Gastrointestinal Diseases , Liver Diseases , Digestive System , Humans , SARS-CoV-2
11.
Ann Palliat Med ; 10(2): 2062-2071, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1094612

ABSTRACT

BACKGROUND: To retrospectively analyze the pulmonary computed tomography (CT) characteristics and dynamic changes in the lungs of cured coronavirus disease 2019 (COVID-19) patients at discharge and reexamination. METHODS: A total of 155 cured COVID-19 patients admitted to designated hospitals in Yunnan Province, China, from February 1, 2020, to March 20, 2020, were included. All patients underwent pulmonary CT at discharge and at 2 weeks after discharge (during reexamination at hospital). A retrospective analysis was performed using these two pulmonary CT scans of the cured patients to observe changes in the number, distribution, morphology, and density of lesions. RESULTS: At discharge, the lung CT images of 15 cured patients showed no obvious lesions, while those of the remaining 140 patients showed different degrees of residual lesions. Patients with moderate disease mostly had multiple pulmonary lesions, mainly in the lower lobes of both lungs. At reexamination, the lung lesions in the patients with moderate disease had significantly improved (P<0.05), and the lung lesions in the patients with severe disease had partially improved, especially in patients with multi-lobe involvement (χ 2 =3.956, P<0.05). At reexamination, the lung lesions of patients with severe disease did not show significant changes (P>0.05). CONCLUSIONS: The pulmonary CT manifestations of cured COVID-19 patients had certain characteristics and variation patterns, providing a reference for the clinical evaluation of treatment efficacy and prognosis of patients.


Subject(s)
COVID-19/diagnostic imaging , Survivors , Tomography, X-Ray Computed , China , Humans , Lung/diagnostic imaging , Patient Discharge , Retrospective Studies
13.
BMC Pulm Med ; 20(1): 129, 2020 May 07.
Article in English | MEDLINE | ID: covidwho-1017172

ABSTRACT

BACKGROUND: Although typical and atypical CT image findings of COVID-19 are reported in current studies, the CT image features of COVID-19 overlap with those of viral pneumonia and other respiratory diseases. Hence, it is difficult to make an exclusive diagnosis. METHODS: Thirty confirmed cases of COVID-19 and forty-three cases of other aetiology or clinically confirmed non-COVID-19 in a general hospital were included. The clinical data including age, sex, exposure history, laboratory parameters and aetiological diagnosis of all patients were collected. Seven positive signs (posterior part/lower lobe predilection, bilateral involvement, rounded GGO, subpleural bandlike GGO, crazy-paving pattern, peripheral distribution, and GGO +/- consolidation) from significant COVID-19 CT image features and four negative signs (only one lobe involvement, only central distribution, tree-in-bud sign, and bronchial wall thickening) from other non-COVID-19 pneumonia were used. The scoring analysis of CT features was compared between the two groups (COVID-19 and non-COVID-19). RESULTS: Older age, symptoms of diarrhoea, exposure history related to Wuhan, and a lower white blood cell and lymphocyte count were significantly suggestive of COVID-19 rather than non-COVID-19 (p < 0.05). The receiver operating characteristic (ROC) curve of the combined CT image features analysis revealed that the area under the curve (AUC) of the scoring system was 0.854. These cut-off values yielded a sensitivity of 56.67% and a specificity of 95.35% for a score > 4, a sensitivity of 100% and a specificity of 23.26% for a score > 0, and a sensitivity of 86.67% and a specificity of 67.44% for a score >  2. CONCLUSIONS: With a simple and practical scoring system based on CT imaging features, we can make a hierarchical diagnosis of COVID-19 and non-COVID-19 with different management suggestions.


Subject(s)
Betacoronavirus , Coronavirus Infections/diagnostic imaging , Pneumonia, Viral/diagnostic imaging , Adult , COVID-19 , Diagnosis, Differential , Female , Humans , Male , Middle Aged , Pandemics , SARS-CoV-2 , Tomography, X-Ray Computed
14.
Can J Infect Dis Med Microbiol ; 2020: 4783062, 2020.
Article in English | MEDLINE | ID: covidwho-873615

ABSTRACT

OBJECTIVE: To explore the clinical characteristics of patients with different severity in the early outbreak of COVID-19, hoping to provide reference for clinical diagnosis and treatment. METHODS: We retrospectively analyzed the clinical data of 95 COVID-19 patients in Wuhan Red Cross Hospital of China from January 17 to February 13, 2020. All patients were investigated with epidemiological questionnaires. Outcomes were followed up until April 1, 2020. RESULTS: There were 53 males and 42 females, aged 22-84 years (mean 57.3 years). Clinical classification included 54 cases of common type, 27 cases of severe type, and 14 cases of critical type. Six patients had been exposed to the local Huanan seafood market. There were 38 clusters of COVID-19, including 27 family clusters and 11 work unit clusters. Common symptoms included fever (86 (90.5%) of 95), cough (73 (76.8%)), and fatigue (50 (52.6%)). Laboratory findings showed that the most common abnormalities were lymphopenia (75 (78.9%)), elevated D-dimer (60 (63.2%)), and elevated C-reactive protein (56 (58.9%)) on admission. All patients had abnormal chest computed tomography, showing patchy shadows or ground-glass opacities. Severe and critical cases were older, more likely to have shortness of breath, more likely to have underlying comorbidities, and more likely to have abnormal laboratory findings than common cases. The prognosis of patients with different degrees of severity was significantly different. All common and severe patients (100%) were cured and discharged from the hospital, while 10 (71.4%) of 14 critical patients died. CONCLUSIONS: COVID-19 has fast transmission speed and high pathogenicity. We must assess the severity of the disease and take corresponding treatment measures as early as possible.

15.
Respir Med ; 168: 105980, 2020 07.
Article in English | MEDLINE | ID: covidwho-95732

ABSTRACT

INTRODUCTION: Chest CT is thought to be sensitive but less specific in diagnosing the 2019 coronavirus disease (COVID-19). The diagnostic value of CT is unclear. We aimed to compare the performance of CT and initial RT-PCR for clinically suspected COVID-19 patients outside the epicentre-Wuhan, China. MATERIALS AND METHODS: Patients clinically suspected of COVID-19 infection who underwent initial RT-PCR and chest CT at the same time were retrospectively enrolled. Two radiologists with specific training reviewed the CT images independently and final diagnoses of the presence or absence of COVID-19 was reached by consensus. With serial RT-PCR as reference standard, the performance of initial RT-PCR and chest CT was analysed. A strategy of combining initial RT-PCR and chest CT was analysed to study the additional benefit. RESULTS: 82 patients admitted to hospital between Jan 10, 2020 to Feb 28, 2020 were enrolled. 34 COVID-19 and 48 non-COVID-19 patients were identified by serial RT-PCR. The sensitivity, specificity was 79% (27/34) and 100% (48/48) for initial RT-PCR and 77% (26/34) and 96% (46/48) for chest CT. The image readers had a good interobserver agreement with Cohen's kappa of 0.69. No statistical difference was found in the diagnostic performance between initial RT-PCR and chest CT. The comprehensive strategy had a higher sensitivity of 94% (32/34). CONCLUSIONS: Initial RT-PCR and chest CT had comparable diagnostic performance in identification of suspected COVID-19 patients outside the epidemic center. To compensate potential risk of false-negative PCR, chest CT should be applied for clinically suspected patients with negative initial RT-PCR.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections , Pandemics , Pneumonia, Viral , Tomography, X-Ray Computed/methods , Aged , COVID-19 , Child , China/epidemiology , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Early Diagnosis , Female , Humans , Lung/diagnostic imaging , Male , Middle Aged , Observer Variation , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Reproducibility of Results , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2 , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL